
[Saini, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [688]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
SWARM INTELLIGENCE TECHNIQUE AND ARTIFICIAL INTELLIGENCE

TECHNIQUE IN SOFTWARE TESTING

 (INTEGER TYPE TEST DATA GENERATION)

Dipen Saini, Dr.Parminder Kaur

Department of Computer Science & Engineering, Guru Nanak Dev University, Amritsar, India

Abstract
In this research work, we have used genetic algorithm an artificial intelligence technique for automatic generation of

test data for integer in case of path testing and for automatic generation of test cases. In case of small problems paths

can be easily seen and we can manually select the target path, but in case of large complex problems where control

flow graph of a problem is very large like control flow graph of www.irctc.com will be very large and it is very

difficult to generate all the paths manually , as there are many paths in the graph we might miss some path, so to

generate all the paths automatically, we have used one swarm intelligence technique called intelligent water drop

algorithm, which is a graph based algorithm, which select the paths on the basis of probability and generate all the

paths in the graph. With an assumption that, most feasible paths are first generated as compare to infeasible paths if

present.

Keywords—Software testing, test data, swarm intelligence, IWD algorithm, Artificial intelligence, Genetic

algorithm

1.) INTRODUCTION

1.1) Overview

Now days, human life is getting very busy and

technology is getting advanced day by day. We all want

an easy way to do work. For this cause many

companies have worked on the development of

software’s and are also working to develop new

software’s for people and also for themselves, some

software’s have been made for the purpose of providing

service to the human beings like “Adobe Photoshop,

various types of music players etc”, this type of

software’s are called product because they are generic.

These types of software’s are not made for some

specific company. There are many websites which are

also known as product type software’s like

irctc.com,passportseva.com.Some software’s are made

for some specific companies, these types of software’s

are known as project because they are made for some

specific company for example “IBM Rational Robot”, it

is a testing tool made by IBM for their own testing

purpose.

Software development is not an easy process as it

seems to be software development doesn’t only mean to

write a code of programs, it is beyond this, software

development is not just writing programs and merging

them. Software development is a huge process taking

long time and costs very much. There are many phases

in the development of software but one phase which is

very important from the point of cost and time is

testing.

Software testing is the process of finding errors in the

software and this phase’s cost is nearly 50 to 60% of

the total cost of the project. There are various types of

testing techniques and strategies present to test

software. Testing can be done manually or

automatically, in manual testing human do testing

themselves, whereas in automatic testing various tools

are present like” HP Load runner “etc. The main thing

in software testing is test case writing, it can be done in

both ways i.e. manual or automatically. Test cases are

written by inputting the data in the program and seeing

the result. If the result is within limit, it is called

positive testing and if result is not within the limit it is

called negative testing. The main thing in test case

writing is the data which we need to test the program

and examine the result.

Data which is used to test a software or program is

known as test data. We can have test data in excel sheet

which can be entered manually while executing test

cases or it can be read automatically from files (XML,

http://www.ijesrt.com/

[Saini, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [689]

Flat Files, Database etc.) by automation tools.

In order to test software, first thing is to generate Test

Data and some test data are better at finding errors than

others. Therefore, a systematic testing system has to

differentiate good (suitable) test data from bad test

(unsuitable) data, and so it should be able to detect

good test data if they are generated. Nowadays testing

tools can automatically generate test data that will

satisfy certain criteria, such as branch testing, path

testing, etc. However, these tools have problems, when

complicated software is tested. A testing tool should be

general, robust and generate the right test data

corresponding to the testing criteria for use in the real

world of software testing. Therefore, a search algorithm

of a tool must decide where the best values (test data)

lie and concentrate its search there. It can be difficult to

find correct test data because conditions or predicates in

the software restrict the input domain that is a set of

valid data.

Test data that are good for one program are not

necessarily appropriate for another program even if

they have the same functionality. Therefore, an

adaptive testing tool for the software under test is

necessary. Adaptive means that it monitors the

effectiveness of the test data to the environment in

order to produce new solutions with the attempt to

maximize the test effectiveness.

There are number of test-data generation techniques

that have been automated earlier.

Generally the test data generators are broadly classified

as follows:

· Random test-data generators select random inputs for

the test data from some distribution.

· Structured or path oriented test data generators

typically use the program’s control-flow graph, select a

particular path, and use a technique such as symbolic

evaluation to generate test data for that path.

· Goal-oriented test data generators select input to

execute the selected goal, such as a statement,

irrespective of the path taken. Intelligent test data

generators often rely on sophisticated analysis of the

code, to guide the search for new test data.

1.2) Objective of Research

The main objective of this research work is to generate

all the paths of the graph automatically, because in case

of small programs it is very easy to find the paths but in

case of long big programs, we might miss some path

when selecting path manually. To generate paths we

have used a swarm intelligence technique IWD

algorithm, this algorithm is based on the probability

function, this probability function decides which path

will be selected first. Suppose from root node there are

2 paths then on the basis of probability next path will be

selected first, this means IWD algorithm first of all

selects the feasible paths and then other paths are

selected and in the end all paths are selected.

After path is selected, then corresponding to that path a

fitness function is generated, which will be used to

generate test data such that path can be traversed.

Artificial intelligence technique genetic algorithm is

used because it is more efficient then random test data

generator, because in random test data generator we

have no search space, but in genetic algorithm we have

search space so test data will be more efficient.

2.) Related work
The research paper from which I have got an idea to

work on and, many research papers i have read to

complete my thesis work, some of them are as follows:

(Korel, 1990) have worked on the automatic test data

generation. In his work, he has used the concept of

branch function, that how predicate branch can be

converted into branch function which is used in the path

testing.

(Michael et al., 1997) have applied genetic algorithm

for dynamic test data generation and the results are

pretty impressive over random or exhaustive test data

generation, but this model was not applicable for

boolean and string type of variables.

(Lin et al., 2001) have done on work on path testing,

automated test data generation using GA, but in this

path selection is manual and not applicable for long

programs.

(McMinn, 2004) have provided the technique for full

path coverage but failed to provide solution for optimal

test data generation.

(Li et al., 2005) have worked on automatic generation

of test data but have no work on the path coverage.

(Shah, 2007) have developed the IWD algorithm,

swarm based which works on the graph and can be used

to find all paths in the graph automatically.

(Srivastava et al., 2008) have also worked on the

automatic test data generation but no sufficient work on

path coverage.

(Shah, 2008) have improved the IWD algorithm,

swarm based which works on the graph and can be used

to find all paths in the graph automatically.

(Srivastava et al., 2009) have also worked on the

automatic test data generation using ga and have also

worked on path coverage.

 (Srivastava et al., 2010) have worked on test data

using genetic algorithm and hamming distance concept

but optimal test data are uncertain, and stuck in the

local optima and explore more repetitive paths.

(Sidhu et al., 2011) have explained the various areas

where IWD algorithm can be used, they explain the

application areas of IWD algorithm.

 (Srivastava et al., 2012) have worked on automatic

test data generation using IWD,but the result showed by

him is not correct .

http://www.ijesrt.com/

[Saini, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [690]

(Srivastava et al., 2012) have worked on integer type

of data and said IWD can be used to generate string

type of data and genetic algorithm cannot be used to

generate test data string type.

(Aggarwal, et al., 2012) worked on the code coverage

using IWD algorithm and in this fitness function can

further be improved to improve the results.

(Li et al., 2013) proposed a technique using IWD

algorithm and Ant colony optimization but this very

difficult to implement.

3.) Software testing
3.1) Basic concept

According to different practitioners and researchers,

software testing has been defined as given below:

Testing is the process of executing a program with the

intent of finding errors. [15]

A successful test is one that uncovers an as-yet-

undiscovered error. [15]

Testing can show the presence of bugs but never their

absence. [2]

Software testing is an empirical investigation

conducted to provide stakeholders with information

about the quality of the product or service under test,

with respect to the context in which it is intended to

operate.

From the above definitions, this can be concluded that

the software testing is done to enhance the quality of

the software under test. The software must perform as

per the requirements; in addition to that, it should be

free from bugs. Thus software testing can be defined as,

Software testing is a process that detects important

bugs with the objective of having better quality.

[10]

3.2) White box testing

White Box Testing

White box testing also known as glass box testing .It is

a test case design method that uses the control structure

of the procedural design to derive test cases. Using

white box testing methods, the software engineer can

derive test cases that

1. Guarantee that all independent paths within a

module have been exercised at least once.

2. Exercise all logical decisions on their true and

false sides.

3. Execute all loops at their boundaries and

within their operational bounds.

4. Exercise internal data structures to assure their

validity.

Thus white box testing is the testing of the underlying

implementation of a piece of software (e.g., source

code) without regard to the specification (external

description) for that piece of software. The goal of

white box testing of source code is to identify such

items as (unintentional) infinite loops, paths through the

code which should be allowed, but which cannot be

executed and dead (unreachable) code.

[4]

There are several white box (structural) testing criteria:

• Statement Testing: Every statement in the software

under test has to be executed at least once during

testing. A more extensive and stronger strategy is

branch testing.

• Branch testing: Branch coverage is a stronger

criterion than statement coverage. It requires every

possible outcome of all decisions to be exercised at

least once i.e. each possible transfer of control in the

program be exercised. This means that all control

transfers are executed. It includes statement coverage

since every statement is executed if every branch in a

program is exercised once. However, some errors can

only be detected if the statements and branches are

executed in a certain order, which leads to path testing.

• Path testing: In path testing every possible path in the

software under test is executed, this increases the

probability of error detection and is a stronger method

than both statement and branch testing. A path through

software can be described as the conjunction of

predicates in relation to the software's input variables.

However, path testing is generally considered

impractical because a program with loop statements can

have an infinite number of paths. A path is said to be

'feasible', when there exists an input for which the path

is traversed during program execution, otherwise the

path is unfeasible.

 Steps for basis path testing:

Following are the steps that should be followed for

designing test cases using basis path testing:

ˆ Draw the CFG using the code for which test cases

have to be generated.

ˆ Determine the cyclomatic complexity of the graph.

ˆ Cyclomatic complexity provides the number of

independent paths. Find a basis set of independent paths

through the program control structure.

 The basis set is the base for generating the test cases.

Based on every independent path, choose the data such

that this path is executed.

 Control flow graph

The control flow graph (CFG) is a graphical

representation of the control structure of a program.

These can be prepared as a directed graph. It consists of

a set of vertices V and a set of edges E that are ordered

pairs of elements of V.

 Following notations are used for a control flow graph:

Node: It represents one or more procedural statements.

The nodes are denoted by circles and are either

numbered or labeled.

Edges or links: An edge is represented by an arrow, and

it must terminate at a node. It represents the flow of

control in a program.

Decision node: A node with more than one arrow

http://www.ijesrt.com/

[Saini, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [691]

leaving from it is called a decision node.

Junction node: A node with more than one arrow

entering into it is called a junction node.

Region: The area bounded by some edges and nodes is

called region.

As a control flow graph is drawn on the basis of the

control structure of a program, Figure- 1 shows some of

the fundamental graphical notations for basic

programming constructs

Figure 1 Notation in CFG

 Cyclomatic complexity

McCabe introduced the concept of measuring the

logical complexity of a program by considering its

control flow graph. The cyclomatic complexity also

known as structural complexity calculates the number

of independent paths through a program. It provides the

upper bound of the number of test cases that must be

designed, in order to ensure that all statements have

been executed at least once and all conditions have

been tested. McCabe's cyclomatic metric is very useful

in finding the total number of independent paths present

in any program.

Cyclomatic complexity can be calculated as shown

below:

V (G) = e- n + 2p eq (3.1)

Where,

V (G) is the cyclomatic complexity; p is the number of

graphs,

e is the number of edges in the whole graph, and n is

the number of nodes in the whole graph.

4.) Swarm intelligence
4.1 Swarm intelligence

Swarm intelligence (SI) is the collective behavior of

decentralized, self-organized systems, natural or

artificial. The concept is employed in work on artificial

intelligence.

SI systems consist typically of a population of simple

agents or boids interacting locally with one another and

with their environment. The inspiration often comes

from nature, especially biological systems. The agents

follow very simple rules, and although there is no

centralized control structure dictating how individual

agents should behave, local, and to a certain degree

random, interactions between such agents lead to the

emergence of "intelligent" global behavior, unknown to

the individual agents. Examples in natural systems of SI

include ant colonies, bird flocking, animal herding,

bacterial growth, and fish schooling. The definition of

swarm intelligence is still not quite clear. In principle, it

should be a multi-agent system that has self-organized

behavior that shows some intelligent behavior. [7]

4.2 Intelligent water drop algorithm

4.2.1 General introduction

IWD algorithm is a new swarm-based optimization

algorithm inspired from natural rivers. In a natural

river, water drops move towards center of the earth, due

to some gravitational force acting on it. Due to this the

water drop follows the straight and the shortest path to

its destination. Pictorial representation of basic IWD is

shown in Fig 4.1. In ideal conditions it is observed that

the optimal path will be obtained. Water drop flowing

in the river has some velocity which is affected by

another actor, i.e., soil. [25]

Some changes that occurred while transition of water

drop from one point to another point are:

 1.) Velocity of water drop is increased.

2.) Soil content in the water drop is also increased.

3.) Amount of soil in the riverbed from source to

destination gets decreased.

Figure 2 Concept of IWD

Water drop in the river picks up some soil in it when its

velocity gets high and it releases the soil content when

its velocity is less. Some of the prominent properties of

the natural water drop are taken, based on which IWD

is suggested. IWD has the two following important

properties: [25]

http://www.ijesrt.com/

[Saini, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [692]

1.) The amount of soil the water drop carries, which is

represented by Soil (IWD) (or soil IWD).

2.) The velocity of water drop with which it is

moving now, denoted by Velocity (IWD)or(vel IWD).

Value of both the properties may change during the

transition. Environment contains lots of paths from

source to destination which may be known or unknown

.When the destination is known, IWD follows the best

path to reach the destination (best is in terms of cost

and any other desired measure .)When destination is

unknown it finds the optimal destination. From the

current location to the next location Velocity (IWD) is

increased by an amount, which is nonlinearly

proportional to the inverse of the amount of soil

between the two locations, referred to as the change in

velocity. The Soil (IWD) is also increased by extracting

some soil of the path between two locations. The

amount of soil added to the IWD is inversely (and

nonlinearly) proportional to the time needed for the

IWD to pass from its current location to next location.

IWD chooses the path with less soil content. In the

proposed approach, IWD is applied over the Control

Flow Graph (CFG) to obtain the number of paths

available in the program .The CFG depicts the logical

control flow of the program. All linearly independent

paths could be obtained by CFG .Independent path is

the path in the program that determines at least one new

set of processing statement. In other words it introduces

at least one new edge in the graph. [25]

4.2.2 Practical working of IWD

The IWD algorithm as specified by Shah-Hosseini H.

is as follows :[18]

1.) Initialization of static parameters.

2.) Initialization of dynamic parameters.

3.) Spread the IWDs randomly on the nodes of the

graph.

4.) Update the visited node list of each IWD.

5.) Repeat Steps a to d for those IWDs with partial

solutions.

a.) For the IWD residing in node i, choose the next

node j, which does not violate any constraints of the

problem and is not in the visited node list of the IWD.

b.) For each IWD moving from node i to node j, Update

its velocity.

c.) Compute the soil.

d.) Update the soil.

6.) Find the iteration-best solution from all the solutions

found by the IWDs.

7.) Update the soils on the paths that form the current

iteration best solution.

8.) Update the total best solution by the current iteration

best solution.

9.) Increment the iteration number

10.) Stops with the total best solution.

5. Artificial intelligence
Artificial Intelligence (AI) or Soft computing

techniques are the science, and engineering of making

intelligent machines, especially intelligent computer

programs. These techniques have the ability of

computer, software and firmware to do those things that

we, as humans, recognize as intelligent behavior. A

complete description of the AI technique genetic

algorithm deployed for generating optimal test data and

test case generation is presented in the following

sections. [16]

5.1) Introduction

Genetic algorithms searching mechanism starts with a

set of solutions called a population. One solution in the

population is called a chromosome. The search is

guided by a survival of the fittest principle. The search

proceeds for a number of generations, for each

generation the fitter solutions (based on the fitness

function) will be selected to form a new population.

During the cycle, there are three main operators namely

reproduction, crossover and mutation. The cycle will

repeat for a number of generations until certain

termination criteria are met. It could terminate after a

fixed number of generations, after a chromosome with a

certain high fitness value is located or after a certain

simulation time.

Figure 3 cycle of GA [3]

http://www.ijesrt.com/

[Saini, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [693]

 Figure 4 Flowchart of GA[8]

5.2) Operators of GA

5.2.1Selection

 Roulette wheel selection

Parents are selected according to their fitness. The

better the chromosomes are, the more chances to be

selected they have. Imagine a roulette wheel where all

the chromosomes in the population are placed. The size

of the section in the roulette wheel is proportional to the

value of the fitness function of every chromosome - the

bigger the value is, the larger the section is. See figure 5

for an example. A marble is thrown in the roulette

wheel and the chromosome where it stops is selected.

Clearly, the chromosomes with bigger fitness value will

be selected more times. This process can be described

by the following algorithm.

1.) [Sum] Calculate the sum of all chromosome

fitness’s in population - sum S.

1. [Select] Generate random number from the interval

(0,S) - r.

2. [Loop] Go through the population and sum the fitness’s

from 0 - sum s. When the sum s is greater then r, stop

and return the chromosome where you are.

Of course, the step 1 is performed only once for each

population.

Figure 5 Roulette wheel selections

5.2.2 Crossover

Single point crossover - one crossover point is selected,

binary string from the beginning of the chromosome to

the crossover point is copied from the first parent, and

the rest is copied from the other parent.

 Chromosome A= 11110000

 Chromosome B= 00001111

After single point crossover,

 Chromosome A= 1111000|0

 Chromosome B= 0000111|1

 Chromosome C= 11110001

 Chromosome D=00001110

Two point crossover - two crossover points are

selected, binary string from the beginning of the

chromosome to the first crossover point is copied from

the first parent, the part from the first to the second

crossover point is copied from the other parent and the

rest is copied from the first parent again.(Robert et

al.,1999)

 Chromosome A= 1111|000|0

 Chromosome B= 0000|111|1

 Chromosome C=11111111

 Chromosome D=00000000

5.2.3 Mutation

Bit inversion - selected bits are inverted

 Chromosome A= 1111000|0

 Chromosome B= 11110001

6.) Proposed work

6.1) Working process

Step 1.) Take an algorithm (or source code) of a

program.

Step 2.) Convert the algorithm (or source code) of a

program into the corresponding control flow graph.

Step 3.) Apply IWD on the control flow graph of a

program.

 3.1 All the independent paths present in the

graph will be generated.

Step 4.) Select the target path.

http://www.ijesrt.com/

[Saini, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [694]

Step 5.) Then use GA technique to generate the test

data as input to the program which will traverse the

target path.

6.2) A case study

A case study has been taken, describing a customer's

activity of withdrawing money from ATM. The

scenario considered here for design of fitness function

is that the customer tries to withdraw certain amount

from the ATM machine (this withdrawal amount is the

initial test data generated randomly, with an assumption

that customer entering the withdrawal amount is

random).

6.2.1 Pseudo code of ATM Activity

Step 1.) Customer inserts the ATM card in the ATM

machine.

Step. 2) Card number is read by the bank database.

Step 3.) Request for the pin number is generated.

Step 4.) Customer enters the pin number.

Step 5.)If pin number is correct

 Then

 Menu appears

 Else

 Enter the pin again

Step 6.) Request for the money withdrawal by the

customer is entered in the ATM machine.

Step 7.) Balance request is send from ATM to the bank

database.

Step 8.) From bank database, amount request is send to

the ATM and asks the customer to enter the

withdrawal amount.

Step 9.) Customer enters the withdrawal amount and

request is send to the bank database.

Step 10.) Bank database checks whether the enter

amount is valid,

 If amount is valid, then debit process takes

place

 Else

 No transaction possible.

Step 11.) If debit process takes place, response from

bank database is given to the customer by dispensing

cash to the customer.

Step 12.) Customer collects the money.

Step 13.) Request from database to the customer, want

a receipt?

Step 14.) If Customer replies yes to the request.

Step 15.) A printed cash receipt is generated.

The ATM system sends the amount and the account

number to the bank system. The bank system retrieves

the current balance of the corresponding account and

compares it with the entered amount for withdrawal. If

the current balance amount in the account is found to be

greater than the entered withdrawal amount, then the

amount can be withdrawn from the ATM and the bank

system returns true, after which the customer can

withdraw the money, otherwise it checks for the limit if

the amount entered for the withdrawal is greater than

the total amount (current balance) available in the

account, then the amount cannot be withdrawn from the

ATM,and bank returns false then, after which the

customer cannot withdraw the money. Depending on

the return value, the ATM machine dispenses the cash

and prints the receipt or displays the failure message.

6.2.2 Algorithm for ATM withdrawal activity

1.) T_ bal = 25000, min_ bal = 1000;

2.) Am_ left(1: i) = T_ bal – wd_ amt(1:i);

3.) if wd _ amt(1: i) < T_ bal

4.) if Am_ left(1: i) > min_ bal

5.) success_bal(1:k) = Am_ left(1:i);

 Else

6.) failure_ bal(1: p) = Am_ left(1: i);

7.) test data(1: p) = wd_ amt(1: i);

6.2.3 Generation of test data using IWD and GA

Step 1.) Taking an algorithm of an ATM withdrawal

activity.

 T_ bal = 25000, min_ bal = 1000;

1.) Wd_ amt(1:i)=x(1:i);

2.) Am_ left(1: i) = T_ bal – wd_ amt(1:i);

3.) if wd _ amt(1: i) < T_ bal

4.) if Am_ left(1: i) > min_ bal

5.) success_ bal(1: p) = Am_ left(1: i);

 Else

6.) failure _bal(1:k) = Am_ left(1:i);

7.) test data(1: p) = wd_ amt(1: i);

Step 2.) Constructing control flow graph of the given

algorithm. Control flow graph can be made manually or

automatically .We have made control flow graph

manually using c++ programming language and

visualization of this control flow graph is given using

matlab.

http://www.ijesrt.com/
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Artificial%20Intelligence%20Technique.doc%23page55

[Saini, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [695]

Figure 6 Code of CFG

Figure 7 Control flow graph of ATM algorithm

Step 3.) Cyclomatic complexity of graph

 Cyclomatic complexity of a graph will give us

the number of independent paths.

 Cyclomatic complexity can be calculated as

shown below:

C (G) = e- n + 2g

Where

e= edges in the graph

n= number of nodes in the graph

g= number of graph

 Cyclomatic complexity of the given graph can be

calculated as shown below:

 C (G) =8-7+2*1

 C (G) = 1+2=3

 Cyclomatic complexity of the given graph is 3, so there

are 3 independent paths in the graph.

Step 4.) Generating all the independent paths present in

this graph.

 IWD algorithm is used to generate all the paths

in this graph.

 Algorithm 1.) This algorithm is used to generate

cyclomatic complexity of each node

Initialization:

Global array visited [N]

/* empty array of size N, where N = number of nodes in

the graph */

Input: root node of Graph (N, E)

/* Graph (N, E) = Graph containing N nodes and E

edges */

Output: cyclomatic_complexity of each node

Step 1. If node is already visited OR node is an end

node then return 1;

Step 2. Add node to visited list;

Step 3. Loop for all branches

Step 3.1 Increment result by cyclomatic complexity of

noderesult += cyclomatic_complexity (node);

Goto Step-1

Step 3.2 End loop

Step 4. Return result;

Result of algorithm 1

Cyclomatic complexity of node 7 = 0

Cyclomatic complexity of node 6 = 1

Cyclomatic complexity of node 5 = 1

Cylomatic complexity of node 4 = Cyclomatic

complexity

of node 6+

Cyclomatic

complexity

http://www.ijesrt.com/

[Saini, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [696]

of node 6

=1+1=2

Cyclomatic complexity of node 3= Cyclomatic

complexity

of node

4+1=3

Cyclomatic complexity of node 2= Cyclomatic

complexity of node 3=3

Cyclomatic complexity of node 1= Cyclomatic

complexity of node 2=3

Table 1 Cyclomatic complexity of all nodes

Nodes Cyclomatic complexity

1 3

2 3

3 3

4 2

5 1

6 1

7 0

Algorithm 2.) This algorithm is used to generate the

independent paths

Initialization:

Max_Iteration - Maximum time Iteration to be

performed

Init_Soil - Initial soil on the path

soil (i,j) - Available amount of soil between node (i)

and node (j)

Visited Path - Contains information about node that has

been visited

paths (i) - Number of path from node (i) yet to be

explored

p (i,j) - Probability of choosing path between node (i)

and node (j)

Input: Graph(N,E), cyclomatic_complexity of each

node

Output: Path_List = Contains all extracted paths

(initially empty list)

Step 1.) Initialize all static parameters (from Step-1.1 to

Step-1.8)

 Step 1.1 Graph (N, E) having total N nodes

 Step 1.2 Max_Iteration = CC which we have

found using Algorithm 1

 Step 1.3 Velocity updating parameters

 av = 1, bv = 0.01, cv = 1 and α= 1

 Here, the av, bv, cv and α are user-

selected positive parameters.

 Step 1.4 Soil updating parameters

 as = 1, bs = 0.01 and cs = 1

 Here, the as, bs and cs are user-selected

positive parameters.

 Step 1.5 Initial soil on each edge of graph

 Init_Soil = 10000, (It is assigned to each

edge, i.e.,

soil(i,j) =

Init_Soil)

 Step 1.6 for all IWD, Soil (IWD) = 0

 Step 1.7 Initial velocity of each IWD

 Init_Vel = 200(It is assigned to each

drop)

 Step 1.8 Visited_Path = empty list

Step 2. Put IWD on root node of the graph (CFG)

Step 3. Calculate probability for choosing next node (j)

from available path of node (i).

Step 3.1 Probability can be find using formulae

 P(i,j)= (paths(j)/paths(i))+(soil(i,j)/Init_soil)-

((Σsoil(i,k)/Init_Soil)/no. of k)

where, paths (i) = number of path from node (i) yet to

be explored (CC(i)),Σsoil(i,k) = Sum of the soil of

every path i to k, i≠k. Probability formulae is used for

finding probability of a path when there are two nodes

are available for moving forward from the current node

(i). This function can also tackle the blocked path

situation. Along with that for handling the situation of

paths having same CC, the concept of soil has also been

introduced in the fitness function which is likely to be

varied for the different paths.

 Step 3.2 using the formulae as mentioned in Step-3.1,

find probability for all outgoing paths from the current

node (i)

Step 4. Choose next path which is having greatest

probability because it is the optimal path where many

other paths are yet to be explored, e.g., p(3,4) > p(3,7),

then choose path(3,4) and add it to the visited path list.

Step 5. Update the Velocity (IWD) (denoted by

velIWD) moving from node (i) to node (j).

 veliwd (t+1) = veliwd (t)+ av /(bv+(cv *

soil2*α(I,j))

 where veliwd (t+1) is the updated velocity of

IWD

Step 6. Update time parameter for IWD

 time (i,j; veliwd (t+1))=HUD(j) / veliwd

 HUD (j) = CC of CFG × CC at node (j) where, a local

heuristic function HUD(j) has been defined for a given

problem to measure the undesirability of an IWD to

move from one location to the next.

Step 7. For the IWD, moving on path node (i) to node

(j), it computes the change of soil.

 Soil(i,j)= av /(bv+(cv * time2 (i,j; veliwd (t+1)))

where, Δsoil(i,j) which IWD loads from path while

traversing through that path.

http://www.ijesrt.com/

[Saini, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [697]

Step 8. Update the Soil (IWD) (denoted by soilIWD) by

some amount which it has loaded from path soilIWD=

soilIWD + Δsoil(i,j)

Step 9. Update the soil of path between node (i) and

node (j).

soil (i,j) = soil(i,j) - Δ soil(i,j)

Step 10. Repeat Step-3 to Step-9 until it encounters the

end node or already visited node.

Step 11. Store the whole path as one of the final

independent path in Path_ List and decrease CC by 1

Step 12. Repeat Step-2 to Step-11 until, CC (root

node)! = 0

Step 5.) Test data generation using Genetic algorithm

Figure 8 CFG

Node1: wd_ amt (1:i)=x(1:i);

Node2: Am_ left (1: i) = T_ bal – wd_ amt (1:i);

 Node3: if wd _ amt (1: i) < T_ bal

 Node4: if Am_ left (1: i) ≥ min_ bal

 Node5: success_ bal (1: p) = Am_ left (1: i);

Node6:failure_bal(1:k)=Am_left(

1:i);

 Node7: test data (1: p) = wd_ amt (1: i);

Table 2 Alphabetical notations

Nodes Corresponding

Variable

Alphabetical

Notations

1 wd_ amt A

2 T_ bal X

3 Am_ left B

4 min_ bal C

5 failure_ bal D

6 success_ bal E

7 test data F

After generation of all paths in the graph, a target path

is selected as P. The goal of the test data generation

problem is to find a program input x on which path P

will be traversed.

Path P: 123467

Condition for Path P is A<X, B<C, D=B.

Path P: 123457

Condition for Path P is A<X, B≥C, C=B.

where A=x, B=25000-x, C=1000

Target path=123457

Steps for GA

1.) Intially, we generate a test data (x (i)) randomly as

chromosomes in the population.

2.) Initially randomly generated test data is in binary

form it is converted into integer form.

3.) Now we have to find the fitness function. Fitness

function is made with the help of korel’s theory.

Without loss of generality, Korel assumed that the

branch predicates are simple relational expressions

(inequalities and equalities). That is, all branch

predicates are of the form: E1 op E2, where E1 and E2

are the arithmetic expressions and op is one of {<, ≤,>,

≥, =, ≠}. In addition, he assumed that predicates do not

contain AND or OR or any other boolean operators.

Each branch predicates E1 op E2 can be transformed to

the equivalent predicate of the form: F rel O (Operator),

where F and rel are given in Table-. [11]

Table 3 Korel Distance values

Branch predicate Branch function

F

rel

E1 > E2 E2 - E1 <

E1 ≥ E2 E2 - E1 ≤

E1 < E2 E1 – E2 <

http://www.ijesrt.com/

[Saini, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [698]

E1 ≤ E2 E1 – E2 ≤

E1 = E2 abs(E1 – E2) =

E1 ≠ E2 abs(E1 – E2) ≤

F is a real valued function, referred to as branch

function, which is:

i. Positive (or zero if rel is <) when a branch predicate

is false or

ii.Negative (or zero if rel is = or) when the branch

predicate is true.

It is obvious that F is actually a function program input.

But this process requires a very large and complex

algebraic manipulation. For this reason an alternative

approach was used in which the branch function was

evaluated. Basis path testing includes both statement

testing and branch testing. For example, to test \if a > b

then", it has a branch function F, whose value can be

computed for a given input by executing the program

and evaluating `a - b' expression.

This concept was used in the approach to test the

Automatic Teller Machine (ATM) withdrawal task.

Test data was generated for a single feasible path in

CFG with respect to ATM withdrawal task. The fitness

function for the ATM withdrawal scenario was based

on the traversal of predicate nodes.

Suppose a situation, withdrawal money is less than the

total amount in the account. Now, Am_ left can be less

than min_ bal i.e. B < C or Am_ left can be more than

min_ bal i.e. B > C or Am_ left can be equal to the

min_ bal i.e. B = C. So taking equality condition into

consideration, B = C, B- C = 0, abs (B-C). As GA for

test data generation is minimization problem, the fitness

function `f' is given as 1= abs (B-C). But this functional

value will evaluate to infinity when B-C= 0, so to avoid

this condition a small delta value (= 0:05) is added to

the fitness function. Hence the fitness function in

general is given as:

f = 1/ ((abs (B-C) + 0.05)2)

More general form of fitness function

f = 1/ ((abs (Am_ left - min_ bal) + 0.05)2)

 Am_ left = T_ bal – wd_ amt

T_ bal= 25000

 wd_ bal= x

 Am_ left = 25000 – x

 min_ bal=1000

Now, the general form of fitness function used in the

implementation process is

f = 1/ ((abs (25000 –x- 1000) + 0.05)2) where

0≤x≤23900

Algorithm- 1 shows the approach followed to generate

test data for the basis path derived from CFG using GA.

Algorithm 1 - Test Data Generation using GA

Input: Randomly generated numbers based on the target

path to be covered.

Output: Test data for the target path.

Begin

Gen = 0.

while (Gen < 50) do

Step 1.) Evaluate the fitness value of each chromosome

based on the fitness function. Fitness function: f = 1/

((abs (25000-x (i)-1000) + 0:05)2) where 0≤x≤23900

Step 2.) Use Roulette wheel as selection operator, to

select the individuals to enter into the mating pool.

Step 3.) Performed one point and two-point cross over

on the individuals in the mating pool, to generate the

new population.

Step 4.) Performed bitwise Mutation on chromosomes

of the new population.

Gen = Gen + 1;

go to Step 3.

end while

Select the chromosome having the best fitness values

which traverse the target path and make it a feasible

path, as the desired result (

7. Implementation & Results

7.1 Case study 1 (integer type)

Fitness function f(x) =1/ ((abs (25000-x-1000) +0.05)

^2)

In genetic algorithm, we prefer to minimize the fitness

function. So, we have to minimize this fitness function.

f(x) x->∞ = 1/ ((abs (25000-x-1000) +0.05) ^2)

1.) for 0 ≤ x ≤ 23900, path 123457 will be traverse and

it will become a feasible path.

2.) for 24000 ≤ x ≤ 24900, path 123467 will be traverse

and it will become a feasible path.

3.) for 25000≤ x ≤ ∞, path 1237 will be traverse and it

will become a feasible path.

Table 4 Experimental setup

S.no GA parameters Values

1.) Population size 50

2.) Chromosome length 15

3.) Selection Roulette wheel

4.) Crossover Single point

with pc=0.5

5.) Mutation Bitwise with

pm=0.05

6.) Generations 50

Our target path is P= 123457, so fitness function will be

calculated with a limit on x i.e. x will be between o and

23900.

Fitness function f(x) 0≤ x≤ 23900 = 1/ ((abs (25000-x-1000)

+0.05) ^2)

http://www.ijesrt.com/
file:///C:/Documents%20and%20Settings/Administrator/Desktop/Artificial%20Intelligence%20Technique.doc%23page41

[Saini, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [699]

(a) When we consider the case, no money is withdrawn

i.e. 0 ≤ x ≤ 23900, the objective function value is

0.0002 * 10-5. (Single point crossover)

Figure 9 objective function value 1

(b) When we consider the case, no money is withdrawn

i.e. 0 ≤ x ≤ 23900, the objective function value is

0.0002 * 10-5. (Two point crossover)

Figure 10 objective function value 2

(c) When we consider the case, money is withdrawn i.e.

100 ≤ x ≤ 23900, the objective function value is 0.0002

* 10-5.

Figure 11 objective function value 3

7.1.1 Results

Table 5 Results of GA

S.no Input

variable(x

)

Fitness

function

value range

Test

data %

Path traversed

(feasible)

1.) 0 ≤ x ≤

23900

(0.0002

– 9.9900) *

10-5

67% 123457

2.) 24000 ≤ x

≤ 24900

3% 123467

3.) 25000 ≤ x

≤ ∞

30% 1237

Conclusion and future work
Software testing is very important from the point of

software development process and test data is very

important to test the application and write efficient test

cases. In this research work, we have shown that how

we can automatically generate paths of a control flow

graph which will be very useful in case of large

applications which have very complex control flow

graph for example if we have to make a control flow

graph of website www.irctc.com it will be very difficult

to manual generate paths from it one by one. In case of

test data generation we have shown with the help of

results that test data of integer type, generated with the

help of genetic algorithm is more optimal than random

http://www.ijesrt.com/

[Saini, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [700]

data generation. In future work can be done to generate

conditions on path automatically with the help of

parsing technique or a parsing tool and some another

swarm or artificial technique can be

used to generate data and can be seen whether it is

better than genetic algorithm or not.

Acknowledgements
The success of this research depends on the

encouragement and guidance I got from many

individuals. I take this opportunity to express my

gratitude to then in my humble acknowledgement.

First my greatest thanks go to Dr. (Mrs.) Parminder

Kaur, Assistant Professor, Department of computer

Science and Engineering, Guru Nanak Dev University,

Amritsar. She has motivated, encouraged and laughed

with me during the year of study. Without the support,

valuable feedback and the opportunities created by her,

I would not have finished this research paper.

In addition, I want to thank Dr. Gurvinder Singh,

Professor and Head, Department of computer Science

and Engineering, Guru Nanak Dev University,

Amritsar, for his constant encouragement. He is always

ready with good and precise feedback, during my study

at Guru Nanak Dev University, Amritsar.

I take this opportunity to record my sincere thanks to all

the faculty members of the Department of Computer

Science and Engineering, for their help and

encouragement. I also thank my parents for their

encouragement and support.

I also place on record, my sense of gratitude to one and

all who, directly or indirectly, have lent helping hand in

this venture.

References

 [1] Chauhan,Software Testing - Principles and

Practices, Oxford UniversityPress,2011

 [2] Dahl, Dijkstra, Hoare,Structured programming.

Academic Press Ltd., 1972

 [3] Deepa,Sivanandam,Introduction to genetic

algorithm. Springer Press, 2008

 [4] Edvardsson,”A Survey on Automatic Test Data

Generation”,in Proceedings of the Second

Conference on Computer Science and

Engineering, (pp. 21-28),2007

 [5] Goldberg,Genetic Algorithms. Addison Wesley,

1988

 [6] Haibin, Senqi,Xiujuan,”Air robot path planning

based on Intelligent Water Drops optimization.

IEEE World Congress on Computational

Intelligence, pp. 1397 – 140, 2008

 [7] Hamed,”Problem solving by intelligent water

drops. IEEE Congress on Evolutionary

Computation, (pp. 3226-3231), 2008

 [8]Haupt, Haupt, Genetic algorithm, Wiley

Publications, 2008

 [9]Holland.,Adaptation in natural and artificial

system, Ann Arbor, The University of Michigan

Press,1975

 [10]Kaner,Exploratory testing in Quality Assurance

Institute Worldwide Annual Software Testing

Conference, Orlando, FL,2006

 [11]Korel,”Automated Software Test Data

Generation”, IEEE Transactions on Software

Engineering, 16(8), 870–879.

doi:10.1109/32.57624,1990

 [12]Koza,A genetic Programming, Ann Arbor. The

University of Michigan Press, 1992

 [13]H.Li & Lam,”Software Test Data Generation

using Ant Colony Optimization”, Journal of

World Academy of Science Engineering and

Technology, 557-560, 2005

 [14]McMinn,”Search-Based Software Test Data

Generation: A Survey. Software Testing”,

Verification and Reliability, 14(3), 212–223, 2005

 [15]Myers, C. Sandler, and T. Badgett,The art of

software testing. Wiley, 2011

 [16]Naaz,”Artificial Intelligence Techniques in

Software Engineering”,in Proceedings of the

International MultiConference of Engineers and

Computer Scientists, (pp. 1-3),2009

 [17]Pargas,Mary Jean Harrold,Robert Peck,” Test-

data generation using genetic algorithms”, in

Software Testing. Verification & Reliability,

9(4):263–282, 1999

 [18]Shah-Hosseini,”Problem solving by intelligent

water drops”, in IEEE Congress on Evolutionary

Computation, (pp. 3226-3231), 2007

 [19]Shah-Hosseini,”The intelligent water drops

algorithm: a nature-inspired swarm-based

optimization algorithm”, International Journal of

BioInspired Computation, 1(1/2), 71–79.

doi:10.1504/IJBIC.2009.022775,2008
 [20]Sidhu, Aggarwal, Kundra,Application of

intelligent water drop algorithm,2011

 [21]Srivastava & Baby, “Automated Software Testing

Using Metahurestic Technique Based on an Ant

Colony Optimization”,International Symposium

on Electronic System Design (ISED), (pp. 235 -

240), 2010

 [22]Srivastava, Jain, Baheti & Samdani,”Test Case

generation using Genetic Algorithm”,International

journal Information Analysis and Processing

(IJIAP), 3 (1), 7-13, 2010

 [23]Srivastava, Km,Raghurama,”An Approach of

Optimal Path Generation using Ant Colony

Optimization”, TENCON 2009 - IEEE Region 10

Conference , (pp. 1-6),2009

 [24]Srivastava, Ramachandran, Kumar.,Talukder,

Tiwari & Sharma”Generation of Test Data Using

Meta Heuristic Approach”,TENCON - IEEE

Region 10 Conference, (pp. 1-6),2008

http://www.ijesrt.com/

[Saini, 3(12): December, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [701]

 [25]Srivastava,Patel,”Test Data Generation Based on

Test Path Discovery Using Intelligent Water

Drop”, International Journal of Applied

Metaheuristic Computing, 3(2), 56-74,2012

http://www.ijesrt.com/

